Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

2019 NOAA Topobathy Lidar DEM (Voids): Morro Bay, CA

Published by Office for Coastal Management | National Oceanic and Atmospheric Administration, Department of Commerce | Metadata Last Checked: December 19, 2025 | Last Modified: 2019-10-10T00:00:00.000+00:00
These data represent integrated lidar and sonar gridded surface data. Quantum Spatial, Inc. (QSI) collected the topobathymetric lidar using a Riegl VQ880GII system on May 22, 2019. Merkel and Associates collected sonar data to provide bathymetric surface modeling in areas lacking lidar coverage. The sonar was collected between June 17th-19th, 2019 using a SEA SWATHplus-H sonar system. QSI performed the lidar/sonar integration. The dataset includes topobathy data in a LAS 1.4 format file with the following classification:1-Unclassified, 1-O (Overlap bit) - Edge clip (geometrically unreliable points at the edge of flightline swaths), 2-Ground, 7-Noise, 9-NIR water surface, 20-Ignored ground and sonar (excluded for seamless model creation), 40-Bathymetric point, 41-Green laser water surface,and 45- Green laser water column in accordance with project specifications. Sonar data has been assigned a Point Source ID of 9 and a User Byte of 2. All other data is lidar-derived. The NOAA Morro Bay area of covers approximately 4,215 acres over Morro Bay, including the Morro Bay Estuary and roughly 3.6 miles of coastline. LAS files were compiled by 500 m x 500 m tiles. An automated grounding classification algorithm was used to determine bare earth and submerged topography point classification. The automated grounding was followed with manual editing. Classes 2 (ground), and 40 (submerged topography) were used to create the final DEMs. The full workflow used for this project is documented in the NOAA Morro Bay final report. Void DEM dataset- A void shapefile was created to indicate areas where there was a lack of bathymetric returns. This shape was created by triangulating bathymetric bottom points with an edge length maximum of 4.56m to identify all areas greater then 9 square meters without bathymetric returns. This shapefile was used to exclude interpolated elevation data from this dataset.

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov