Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

A Local Asynchronous Distributed Privacy Preserving Feature Selection Algorithm for Large Peer-to-Peer Networks

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: August 04, 2025 | Last Modified: 2025-03-31
In this paper we develop a local distributed privacy preserving algorithm for feature selection in a large peer-to-peer environment. Feature selection is often used in machine learning for data compaction and efficient learning by eliminating the curse of dimensionality. There exist many solutions for feature selection when the data is located at a central location. However, it becomes extremely challenging to perform the same when the data is distributed across a large number of peers or machines. Centralizing the entire dataset or portions of it can be very costly and impractical because of the large number of data sources, the asynchronous nature of the peer-to-peer networks, dynamic nature of the data/network and privacy concerns. The solution proposed in this paper allows us to perform feature selection in an asynchronous fashion with a low communication overhead where each peer can specify its own privacy constraints. The algorithm works based on local interactions among participating nodes. We present results on real-world datasets in order to performance of the proposed algorithm.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov