Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Cell density related gene expression: SV40 large T antigen levels in immortalized astrocyte lines

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 07, 2025 | Last Modified: 2025-09-06
Background Gene expression is affected by population density. Cell density is a potent negative regulator of cell cycle time during exponential growth. Here, we asked whether SV40 large T antigen (Tag) levels, driven by two different promoters, changed in a predictable and regular manner during exponential growth in clonal astrocyte cell lines, immortalized and dependent on Tag. Results Expression and cell cycle phase fractions were measured and correlated using flow cytometry. T antigen levels did not change or increased during exponential growth as a function of the G1 fraction and increasing cell density when Tag was transcribed from the Moloney Murine Leukemia virus (MoMuLV) long terminal repeat (LTR). When an Rb-binding mutant T antigen transcribed from the LTR was tested, levels decreased. When transcribed from the herpes thymidine kinase promoter, Tag levels decreased. The directions of change and the rates of change in Tag expression were unrelated to the average T antigen levels (i.e., the expression potential). Conclusions These data show that Tag expression potential in these lines varies depending on the vector and clonal variation, but that the observed level depends on cell density and cell cycle transit time. The hypothetical terms, expression at zero cell density and expression at minimum G1 phase fraction, were introduced to simplify measures of expression potential.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov