Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
Background
Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus.
Methods
Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope.
Results
1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus.
Conclusions
These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| bureauCode |
[
"009:25"
]
|
| contactPoint |
{
"fn": "NIH",
"@type": "vcard:Contact",
"hasEmail": "mailto:info@nih.gov"
}
|
| description | Background Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. Methods Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. Results 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. Conclusions These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "Official Government Data Source",
"mediaType": "text/html",
"description": "Visit the original government dataset for complete information, documentation, and data access.",
"downloadURL": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC57811/"
}
]
|
| identifier | https://healthdata.gov/api/views/sitk-wqkq |
| issued | 2025-07-14 |
| keyword |
[
"cellulose-acetate-phthalate",
"coreceptor-blockade",
"gp120-binding",
"hiv-1-inactivation",
"nih"
]
|
| landingPage | https://healthdata.gov/d/sitk-wqkq |
| modified | 2025-09-06 |
| programCode |
[
"009:033"
]
|
| publisher |
{
"name": "National Institutes of Health",
"@type": "org:Organization"
}
|
| theme |
[
"NIH"
]
|
| title | Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120 |