Characterizing Variability and Multi-Resolution Predictions
In previous papers, we introduced the idea of a Virtual Sensor, which is a mathematical model trained to learn the potentially nonlinear relationships between spectra for a given image scene for the purpose of predicting values of a subset of those spectra when only partial measurements have been taken. Such models can be created for a variety of disciplines including the Earth and Space Sciences as well as engineering domains. These nonlinear relationships are induced by the physical characteristics of the image scene. In building a Virtual Sensor a key question that arises is that of characterizing the stability of the model as the underlying scene changes. For example, the spectral relationships could change for a given physical location, due to seasonal weather conditions. This paper, based on a talk given at the American Geophysical Union (2005), discusses the stability of predictions through time and also demonstrates the use of a Virtual Sensor in making multi-resolution predictions. In this scenario, a model is trained to learn the nonlinear relationships between spectra at a low resolution in order to predict the spectra at a high resolution.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| accrualPeriodicity | irregular |
| bureauCode |
[
"026:00"
]
|
| contactPoint |
{
"fn": "Ashok Srivastava",
"@type": "vcard:Contact",
"hasEmail": "mailto:ashok.n.srivastava@gmail.com"
}
|
| description | In previous papers, we introduced the idea of a Virtual Sensor, which is a mathematical model trained to learn the potentially nonlinear relationships between spectra for a given image scene for the purpose of predicting values of a subset of those spectra when only partial measurements have been taken. Such models can be created for a variety of disciplines including the Earth and Space Sciences as well as engineering domains. These nonlinear relationships are induced by the physical characteristics of the image scene. In building a Virtual Sensor a key question that arises is that of characterizing the stability of the model as the underlying scene changes. For example, the spectral relationships could change for a given physical location, due to seasonal weather conditions. This paper, based on a talk given at the American Geophysical Union (2005), discusses the stability of predictions through time and also demonstrates the use of a Virtual Sensor in making multi-resolution predictions. In this scenario, a model is trained to learn the nonlinear relationships between spectra at a low resolution in order to predict the spectra at a high resolution. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "JPL2006.pdf",
"format": "PDF",
"mediaType": "application/pdf",
"description": "Paper",
"downloadURL": "https://c3.nasa.gov/dashlink/static/media/publication/JPL2006.pdf"
}
]
|
| identifier | DASHLINK_156 |
| issued | 2010-09-22 |
| keyword |
[
"ames",
"dashlink",
"nasa"
]
|
| landingPage | https://c3.nasa.gov/dashlink/resources/156/ |
| modified | 2025-04-01 |
| programCode |
[
"026:029"
]
|
| publisher |
{
"name": "Dashlink",
"@type": "org:Organization"
}
|
| title | Characterizing Variability and Multi-Resolution Predictions |