Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Data from: Biochar stability in a highly weathered sandy soil under four years of continuous corn production

Published by Agricultural Research Service | Department of Agriculture | Metadata Last Checked: January 27, 2026 | Last Modified: 2025-11-21
This is digital research metadata corresponding to a published manuscript in Energies (MDPI) entitled "Biochar stability in a highly weathered sandy soil under four years of continuous corn production", Volume 14, Issue 19, 6157. Dataset may be accessed via the included link at the Dryad data repository. Biochar is being considered a climate change mitigation tool by increasing soil organic carbon contents (SOC), however, questions remain concerning its longevity in soil. We applied 30,000 kg ha−1 of biochars to plots containing a Goldsboro sandy loam (Fine-loamy, siliceous, sub-active, thermic Aquic Paleudults) and then physically disked all plots. Thereafter, the plots were agronomically managed under 4 years (Y) of continuous corn (Zea mays, L.) planting. Annually, incremental soil along with corresponding bulk density samples were collected and SOC concentrations were measured in topsoil (down to 23-cm). The biochars were produced from Lodgepole pine (Pinus contorta) chip (PC) and Poultry litter (PL) feedstocks. An untreated Goldsboro soil (0 biochar) served as a control. After four years, SOC contents in the biochar treated plots were highest in the top 0–5 and 5–10 cm depth suggesting minimal deeper movement. Declines in SOC contents varied with depth and biochar type. After correction for SOC declines in controls, PL biochar treated soil had a similar decline in SOC (7.9 to 10.3%) contents. In contrast, the largest % SOC content decline (20.2%) occurred in 0–5 cm deep topsoil treated with PC biochar. Our results suggest that PC biochar had less stability in the Goldsboro soil than PL biochar after 4 years of corn grain production. Methods are described in the manuscript: https://doi.org/10.3390/en14196157. Descriptions corresponding to each figure and table in the manuscript are placed on separate tabs in the Excel file to clarify abbreviations and summarize the data headings and units. Resources in this dataset:Resource Title: Digital research data for Biochar stability in a highly weathered sandy soil under four years of continuous corn production. File Name: Web Page, url: https://doi.org/10.5061/dryad.xpnvx0kh2 Novak, Jeffrey et al. (2021), Digital research data from: Biochar stability in a highly weathered sandy soil under four years of continuous corn production, Dryad, Dataset, https://doi.org/10.5061/dryad.xpnvx0kh2

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov