Return to search results
Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks
This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system bond graph (BG) into a set of structurally observable bond graph fac- tors (BG-Fs). Each BG-F is systematically translated into a corresponding DBN Factor (DBN-F), which is then used in its corresponding local diagnoser for quantitative fault detec- tion, isolation, and identification. By construction, the ran- dom variables in each DBN-F are conditionally independent of the random variables in all other DBN-Fs, given a subset of communicated measurements considered as system inputs. Each DBN-F and BG-F pair is used to derive a local diag- noser that generates globally correct diagnosis results by lo- cal analysis. Together, the local diagnosers diagnose all single faults of interest in the system. We demonstrate on an electri- cal system how our distributed diagnosis scheme is compu- tationally more efficient than its centralized counterpart, but without compromising the accuracy of the diagnosis results.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| accrualPeriodicity | irregular |
| bureauCode |
[
"026:00"
]
|
| contactPoint |
{
"fn": "Miryam Strautkalns",
"@type": "vcard:Contact",
"hasEmail": "mailto:miryam.strautkalns@nasa.gov"
}
|
| description | This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system bond graph (BG) into a set of structurally observable bond graph fac- tors (BG-Fs). Each BG-F is systematically translated into a corresponding DBN Factor (DBN-F), which is then used in its corresponding local diagnoser for quantitative fault detec- tion, isolation, and identification. By construction, the ran- dom variables in each DBN-F are conditionally independent of the random variables in all other DBN-Fs, given a subset of communicated measurements considered as system inputs. Each DBN-F and BG-F pair is used to derive a local diag- noser that generates globally correct diagnosis results by lo- cal analysis. Together, the local diagnosers diagnose all single faults of interest in the system. We demonstrate on an electri- cal system how our distributed diagnosis scheme is compu- tationally more efficient than its centralized counterpart, but without compromising the accuracy of the diagnosis results. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "2010_ICBGM_DistrDiagDactoredBGs.pdf",
"format": "PDF",
"mediaType": "application/pdf",
"description": "2010_ICBGM_DistrDiagDactoredBGs.pdf",
"downloadURL": "https://c3.nasa.gov/dashlink/static/media/publication/2010_ICBGM_DistrDiagDactoredBGs.pdf"
}
]
|
| identifier | DASHLINK_805 |
| issued | 2013-07-23 |
| keyword |
[
"ames",
"dashlink",
"nasa"
]
|
| landingPage | https://c3.nasa.gov/dashlink/resources/805/ |
| modified | 2025-03-31 |
| programCode |
[
"026:029"
]
|
| publisher |
{
"name": "Dashlink",
"@type": "org:Organization"
}
|
| title | Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks |