Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: August 04, 2025 | Last Modified: 2025-03-31
A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of cryogenic fuel loading when liquid hydrogen is moved from a storage tank to an external tank via a transfer line. By employing basic conservation laws, the reduced, lumped-parameter model takes into consideration the major multi-phase mass and energy exchange processes involved, such as highly non-equilibrium condensation-evaporation of hydrogen, pressurization of the tanks, and liquid hydrogen and hydrogen vapor flows in the presence of pressurizing helium gas. A self-consistent theory of dynamical condensation-evaporation has been developed that incorporates heat flow by both conduction and convection through the liquid-vapor interface inside the tanks. A simulation has been developed in Matlab for a generic refueling system that involves the solution of a system of ordinary integro-differential equations. The results of these simulations are in good agreement with the Space Shuttle refueling data.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov