Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Effect of alpha-tocopherol on pulmonary antioxidant defence system and lipid peroxidation in cigarette smoke inhaling mice

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 07, 2025 | Last Modified: 2025-09-06
Background Free radicals generated in biological systems by cigarette smoke (CS) inhalation can cause oxidative stress in tissues, resulting in lipid peroxidation (LPO). In view of the antioxidant properties of α-tocopherol (AT), in the present study, effects of AT on antioxidant defence system and LPO were investigated in mice inhaling CS for different time intervals. Results Male Balb/c mice were fed orally with AT (5 I.U./Kg.b.wt.) and /or exposed to CS for 2, 4, 6 or 8 weeks. No effect was observed on body growth, diet consumption, water intake and lung weight due to AT and /or CS treatment in any of the groups as compared to their control counterparts. After two weeks of treatment, no change in LPO, reduced glutathione (GSH) levels and antioxidant enzymes were observed except for glutathione reductase (GR) which increased in all the treated groups. A significant increase in pulmonary LPO levels was observed in mice exposed to CS inhalation for 4, 6 or 8 weeks. There was a gradual increase in the LPO levels as the extent of CS inhalation increased from 4 to 8 weeks. However, the extent of increase in LPO levels due to CS exposure for 4, 6 or 8 weeks in the mice treated with AT was comparatively less. A significant decrease in the GSH levels was also observed in all the animals exposed to CS for 4, 6 or 8 weeks. There was a significant increase in the activities of catalase, glutathione peroxidase (GSH-Px) and GR observed in all the groups exposed to CS for 4,6 or 8 weeks. The increase in above antioxidant enzymes seems to be insufficient to combat the oxidative stress posed by CS inhalation. There was a marked decrease observed in the LPO levels in the animals treated with AT alone for 4, 6, or 8 weeks, when compared to their control counterparts. However, the supplementation of AT for 4, 6 or 8 weeks demonstrated a significant increase in GSH levels. Conclusion It appears from our studies that AT exhibits its antioxidant role either directly by scavenging the oxidative species or indirectly by modulating the GSH levels.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov