Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Empirical Evaluation of Diagnostic Algorithm Performance Using a Generic Framework

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: August 04, 2025 | Last Modified: 2025-03-31
A variety of rule-based, model-based and datadriven techniques have been proposed for detection and isolation of faults in physical systems. However, there have been few efforts to comparatively analyze the performance of these approaches on the same system under identical conditions. One reason for this was the lack of a standard framework to perform this comparison. In this paper we introduce a framework, called DXF, that provides a common language to represent the system description, sensor data and the fault diagnosis results; a run-time architecture to execute the diagnosis algorithms under identical conditions and collect the diagnosis results; and an evaluation component that can compute performance metrics from the diagnosis results to compare the algorithms. We have used DXF to perform an empirical evaluation of 13 diagnostic algorithms on a hardware testbed (ADAPT) at NASA Ames Research Center and on a set of synthetic circuits typically used as benchmarks in the model-based diagnosis community. Based on these empirical data we analyze the performance of each algorithm and suggest directions for future development.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov