Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Entropy-based Probabilistic Fatigue Damage Prognosis and Algorithmic Performance Comparison

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: August 04, 2025 | Last Modified: 2025-04-01
In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an underlying physics-based crack growth model. V arious uncertainties from measurements, modeling, and parameter estimations are considered to describe the stochastic process of fatigue damage accumulation. A probabilistic prognosis updating procedure based on the maximum relative entropy concept is proposed to incorporate measurement data. Markov Chain Monte Carlo (MCMC) technique is used to provide the posterior samples for model updating in the maximum entropy approach. Experimental data are used to demonstrate the operation of the proposed probabilistic prognosis methodology. A set of prognostics-based metrics are employed to quantitatively evaluate the prognosis performance and compare the proposed method with the classical Bayesian updating algorithm. In particular, model accuracy, precision and convergence are rigorously evaluated in* addition to the qualitative visual comparison. It is shown that the proposed maximum relative entropy methodology has narrower confidence bounds of the remaining life prediction than classical Bayesian updating algorithm.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov