Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods
Dataset for "Nicolas Chantel I., Linakis Matthew W., Minto Melyssa S., Mansouri Kamel, Clewell Rebecca A., Yoon Miyoung, Wambaugh John F., Patlewicz Grace, McMullen Patrick D., Andersen Melvin E., Clewell III Harvey J, Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods, Frontiers in Pharmacology, 13, 2022, https://www.frontiersin.org/articles/10.3389/fphar.2022.980747,10.3389/fphar.2022.980747"
Complete Metadata
| accessLevel | public |
|---|---|
| bureauCode |
[
"020:00"
]
|
| contactPoint |
{
"fn": "John Wambaugh",
"hasEmail": "mailto:wambaugh.john@epa.gov"
}
|
| description | Dataset for "Nicolas Chantel I., Linakis Matthew W., Minto Melyssa S., Mansouri Kamel, Clewell Rebecca A., Yoon Miyoung, Wambaugh John F., Patlewicz Grace, McMullen Patrick D., Andersen Melvin E., Clewell III Harvey J, Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods, Frontiers in Pharmacology, 13, 2022, https://www.frontiersin.org/articles/10.3389/fphar.2022.980747,10.3389/fphar.2022.980747" |
| distribution |
[
{
"title": "Supplemental Material.ZIP",
"mediaType": "application/zip",
"downloadURL": "https://pasteur.epa.gov/uploads/10.23719/1528376/Supplemental%20Material.ZIP"
}
]
|
| identifier | https://doi.org/10.23719/1528376 |
| keyword |
[
"Threshold of Toxicological Concern (TTC)",
"computational toxicology",
"high-throughput risk prioritization",
"in silico",
"margin of exposure"
]
|
| license | https://pasteur.epa.gov/license/sciencehub-license-non-epa-generated.html |
| modified | 2022-10-07 |
| programCode |
[
"020:000"
]
|
| publisher |
{
"name": "U.S. EPA Office of Research and Development (ORD)",
"subOrganizationOf": {
"name": "U.S. Environmental Protection Agency",
"subOrganizationOf": {
"name": "U.S. Government"
}
}
}
|
| references |
null
|
| rights |
null
|
| title | Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods |