Groundwater arsenic data and ASCII grids for predicting elevated arsenic in northwestern and central Minnesota using boosted regression tree methods
This data release contains: (1) ASCII grids of predicted probability of elevated arsenic in groundwater for the Northwest and Central Minnesota regions, (2) input arsenic and predictive variable data used in model development and calculation of predictions, and (3) ASCII files used to predict the probability of elevated arsenic across the two study regions. The probability of elevated arsenic was predicted using Boosted Regression Tree (BRT) modeling methods using the gbm package in R Studio version 3.4.2. The response variable was the presence or absence of arsenic >10 µg/L, the U.S. Environmental Protection Agency’s maximum contaminant level for arsenic, in 3,283 wells located throughout both study regions (1,363 in the Northwest region and 1,920 in the Central). The original database used to develop the BRT model consisted of 127 predictor variables which included well characteristics, land use, soil properties, aquifer properties, depth to water table, and predicted nitrate. After optimization steps, a final database of 33 predictor variables was used to predict the occurrence of elevated arsenic across the two study regions.
Complete Metadata
| accessLevel | public |
|---|---|
| bureauCode |
[
"010:12"
]
|
| contactPoint |
{
"fn": "Melinda L Erickson",
"@type": "vcard:Contact",
"hasEmail": "mailto:merickso@usgs.gov"
}
|
| description | This data release contains: (1) ASCII grids of predicted probability of elevated arsenic in groundwater for the Northwest and Central Minnesota regions, (2) input arsenic and predictive variable data used in model development and calculation of predictions, and (3) ASCII files used to predict the probability of elevated arsenic across the two study regions. The probability of elevated arsenic was predicted using Boosted Regression Tree (BRT) modeling methods using the gbm package in R Studio version 3.4.2. The response variable was the presence or absence of arsenic >10 µg/L, the U.S. Environmental Protection Agency’s maximum contaminant level for arsenic, in 3,283 wells located throughout both study regions (1,363 in the Northwest region and 1,920 in the Central). The original database used to develop the BRT model consisted of 127 predictor variables which included well characteristics, land use, soil properties, aquifer properties, depth to water table, and predicted nitrate. After optimization steps, a final database of 33 predictor variables was used to predict the occurrence of elevated arsenic across the two study regions. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "Digital Data",
"format": "XML",
"accessURL": "https://doi.org/10.5066/F77H1HH8",
"mediaType": "application/http",
"description": "Landing page for access to the data"
},
{
"@type": "dcat:Distribution",
"title": "Original Metadata",
"format": "XML",
"mediaType": "text/xml",
"description": "The metadata original format",
"downloadURL": "https://data.usgs.gov/datacatalog/metadata/USGS.59a71705e4b0fd9b77cf6bfb.xml"
}
]
|
| identifier | http://datainventory.doi.gov/id/dataset/USGS_59a71705e4b0fd9b77cf6bfb |
| keyword |
[
"Anoka County",
"Becker County",
"Beltrami County",
"Carver County",
"Clay County",
"Clearwater County",
"Dakota County",
"Hennepin County",
"Mahnomen County",
"McLeod County",
"Meeker County",
"Minnesota",
"Norman County",
"Otter Tail County",
"Polk County",
"Red Lake County",
"Renville County",
"Sherburne County",
"Sibley County",
"USGS:59a71705e4b0fd9b77cf6bfb",
"United States",
"Washington County",
"Wilkin County",
"Wright County",
"arsenic",
"boosted regression trees",
"drinking water supply wells",
"groundwater"
]
|
| modified | 2020-08-27T00:00:00Z |
| publisher |
{
"name": "U.S. Geological Survey",
"@type": "org:Organization"
}
|
| spatial | -97.316894530931, 43.935638495249, -92.988281249849, 48.069046433329 |
| theme |
[
"Geospatial"
]
|
| title | Groundwater arsenic data and ASCII grids for predicting elevated arsenic in northwestern and central Minnesota using boosted regression tree methods |