Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Hisactophilin is involved in osmoprotection in Dictyostelium

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 07, 2025 | Last Modified: 2025-09-06
Background Dictyostelium cells exhibit an unusual stress response as they protect themselves against hyperosmotic stress. Cytoskeletal proteins are recruited from the cytosolic pool to the cell cortex, thereby reinforcing it. In order to gain more insight into the osmoprotective mechanisms of this amoeba, we used 1-D and 2-D gel electrophoresis to identify new proteins that are translocated during osmotic shock. Results We identified hisactophilin as one of the proteins that are enriched in the cytoskeletal fraction during osmotic shock. In mutants lacking hisactophilin, viability is reduced under hyperosmotic stress conditions. In wild type cells, serine phosphorylation of hisactophilin was specifically induced by hypertonicity, but not when other stress conditions were imposed on cells. The phosphorylation kinetics reveals a slow accumulation of phosphorylated hisactophilin from 20–60 min after onset of the hyperosmotic shock condition. Conclusion In the present study, we identified hisactophilin as an essential protein for the osmoprotection of Dictyostelium cells. The observed phosphorylation kinetics suggest that hisactophilin regulation is involved in long-term osmoprotection and that phosphorylation occurs in parallel with inactivation of the dynamic actin cytoskeleton.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov