Return to search results
Model-based Prognostics with Concurrent Damage Progression Processes
Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several different damage processes occurring simultaneously within a component. Each of these damage and wear processes contribute to the overall component degradation. We develop a model-based prognostics methodology that consists of a joint state-parameter estimation problem, in which the state of a system along with parameters describing the damage progression are estimated, followed by a prediction problem, in which the joint state-parameter estimate is propagated forward in time to predict end of life and remaining useful life. The state-parameter estimate is computed using a particle filter, and is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control algorithm that maintains an uncertainty bound around the unknown parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump that includes damage progression models, to which we apply our model-based prognostics algorithm. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the approach when multiple damage mechanisms are active.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| accrualPeriodicity | irregular |
| bureauCode |
[
"026:00"
]
|
| contactPoint |
{
"fn": "Matthew Daigle",
"@type": "vcard:Contact",
"hasEmail": "mailto:matthew.j.daigle@nasa.gov"
}
|
| description | Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several different damage processes occurring simultaneously within a component. Each of these damage and wear processes contribute to the overall component degradation. We develop a model-based prognostics methodology that consists of a joint state-parameter estimation problem, in which the state of a system along with parameters describing the damage progression are estimated, followed by a prediction problem, in which the joint state-parameter estimate is propagated forward in time to predict end of life and remaining useful life. The state-parameter estimate is computed using a particle filter, and is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control algorithm that maintains an uncertainty bound around the unknown parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump that includes damage progression models, to which we apply our model-based prognostics algorithm. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the approach when multiple damage mechanisms are active. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "pump-prognosis.pdf",
"format": "application/x-download",
"mediaType": "application/x-download",
"description": "pump-prognosis.pdf",
"downloadURL": "https://c3.nasa.gov/dashlink/static/media/publication/pump-prognosis.pdf"
}
]
|
| identifier | DASHLINK_884 |
| issued | 2014-01-07 |
| keyword |
[
"ames",
"dashlink",
"nasa"
]
|
| landingPage | https://c3.nasa.gov/dashlink/resources/884/ |
| modified | 2025-04-01 |
| programCode |
[
"026:029"
]
|
| publisher |
{
"name": "Dashlink",
"@type": "org:Organization"
}
|
| title | Model-based Prognostics with Concurrent Damage Progression Processes |