Phospholipase Cδ regulates germination of
Background
Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC is essential to sense the environment of food-activated spores.
Results
Plc-null spores germinate at alkaline pH, reduced temperature or increased osmolarity, conditions at which the emerging amoebae can not grow. In contrast, food-activated wild-type spores return to dormancy till conditions in the environment allow growth. The analysis of inositol 1,4,5-trisphosphate (IP3) levels and the effect of added IP3 uncover an unexpected mechanism how PLC regulates spore germination: i) deletion of PLC induces the enhanced activity of an IP5 phosphatase leading to high IP3 levels in plc-null cells; ii) in wild-type spores unfavourable conditions inhibit PLC leading to a reduction of IP3 levels; addition of exogenous IP3 to wild-type spores induces germination at unfavourable conditions; iii) in plc-null spores IP3 levels remain high, also at unfavourable environmental conditions.
Conclusions
The results imply that environmental conditions regulate PLC activity and that IP3 induces spore germination; the uncontrolled germination of plc-null spores is not due to a lack of PLC activity but to the constitutive activation of an alternative IP3-forming pathway.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| bureauCode |
[
"009:25"
]
|
| contactPoint |
{
"fn": "NIH",
"@type": "vcard:Contact",
"hasEmail": "mailto:info@nih.gov"
}
|
| description | Background Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC is essential to sense the environment of food-activated spores. Results Plc-null spores germinate at alkaline pH, reduced temperature or increased osmolarity, conditions at which the emerging amoebae can not grow. In contrast, food-activated wild-type spores return to dormancy till conditions in the environment allow growth. The analysis of inositol 1,4,5-trisphosphate (IP3) levels and the effect of added IP3 uncover an unexpected mechanism how PLC regulates spore germination: i) deletion of PLC induces the enhanced activity of an IP5 phosphatase leading to high IP3 levels in plc-null cells; ii) in wild-type spores unfavourable conditions inhibit PLC leading to a reduction of IP3 levels; addition of exogenous IP3 to wild-type spores induces germination at unfavourable conditions; iii) in plc-null spores IP3 levels remain high, also at unfavourable environmental conditions. Conclusions The results imply that environmental conditions regulate PLC activity and that IP3 induces spore germination; the uncontrolled germination of plc-null spores is not due to a lack of PLC activity but to the constitutive activation of an alternative IP3-forming pathway. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "Official Government Data Source",
"mediaType": "text/html",
"description": "Visit the original government dataset for complete information, documentation, and data access.",
"downloadURL": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC60988/"
}
]
|
| identifier | https://healthdata.gov/api/views/8ys4-2e9y |
| issued | 2025-07-14 |
| keyword |
[
"dictyostelium",
"inositol-trisphosphate",
"nih",
"phospholipase-c",
"spore-germination"
]
|
| landingPage | https://healthdata.gov/d/8ys4-2e9y |
| modified | 2025-09-06 |
| programCode |
[
"009:033"
]
|
| publisher |
{
"name": "National Institutes of Health",
"@type": "org:Organization"
}
|
| theme |
[
"NIH"
]
|
| title | Phospholipase Cδ regulates germination of |