Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Reverse Osmosis Simulation Data

Published by National Renewable Energy Lab - NREL | Department of Energy | Metadata Last Checked: January 27, 2026 | Last Modified: 2025-08-13T13:53:27Z
This dataset consists of computational fluid dynamics (CFD) output for various spacer configurations in a feed-water channel in reverse osmosis (RO) applications. Feed-water channels transport brine solution to the RO membrane surfaces. The spacers embedded in the channels help improve membrane performance by disrupting the concentration boundary layer growth on membrane surfaces. Refer to the "Related Work" resource below for more details. This dataset considers a feed-water channel of length 150mm. The inlet brine velocity and concentration are fixed at 0.1m/s and 100kg/m3 respectively. The diameter of the cylindrical spacers is fixed as 0.3mm and six varying inter-spacer distances of 0.75mm, 1mm, 1.5mm, 2mm, 2.5mm, and 3mm are simulated. The dataset comprising the steady, spatial fields of solute concentration, velocity, and density near each spacer is placed in the folder corresponding to the spacer configuration considered. We run two sets of CFD simulations and include the outputs from both sets for each configuration: (1) with a coarser mesh, producing low-resolution (LR) data of spatial resolution 20x20, and (2) with a finer mesh, producing high-resolution (HR) data of spatial resolution 100x100. These data points can be treated as images with the quantities of interest as their channels and can be used to train machine learning models to learn a mapping from the LR images as inputs to the HR images as outputs.

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov