Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Rotor health monitoring combining spin tests and data-driven anomaly detection methods

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: February 14, 2026 | Last Modified: 2025-03-31
Health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost, and durable products. In an effort to address technical issues concerning health monitoring, this article considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk to detect the disk faults and assess its structural integrity. The experimental results composed at a range of rotational speeds from tests conducted at the NASA Glenn Research Center’s Rotordynamics Laboratory are evaluated and integrated into multiple data-driven anomaly detection techniques to identify faults and anomalies in the disk. In summary, this study presents a select evaluation of online health monitoring of a rotating disk using high caliber capacitive sensors and demonstrates the capability of the in-house spin system.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov