Simultaneous identification of
Background
The glutathione S-transferase (GST) enzyme GSTP1 utilizes byproducts of oxidative stress. We previously showed that alleles of GSTP1 that encode the Ile105→Val105 substitution are associated with the asthma phenotypes of atopy and bronchial hyperresponsiveness (BHR). However, a further polymorphic site (Ala114→Val114) has been identified that results in the following alleles: GSTP1*A (wild-type Ile105→Ala114), GSTP1*B (Val105→Ala114), GSTP1*C (Val105→Val114) and GSTP1*D (Ile105→Val114).
Methods
Because full identification of GSTP1 alleles may identify stronger links with asthma phenotypes, we describe an amplification refractory mutation system (ARMS) assay that allows identification of all genotypes. We explored whether the GSTP1 substitutions influence susceptibility to asthma, atopy and BHR.
Results
Among 191 atopic nonasthmatic, atopic asthmatic and nonatopic nonasthmatic individuals, none had the BD, CD, or DD genotypes. GSTP1 BC was significantly associated with reduced risk for atopy (P = 0.031). Compared with AA, trend test analysis identified a significant decrease in the frequency of GSTP1 BC with increasing severity of BHR (P = 0.031). Similarly, the frequency of GSTP1 AA increased with increasing BHR.
Conclusion
These data suggest that GSTP1*B and possibly GSTP1*C are protective against asthma and related phenotypes.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| bureauCode |
[
"009:25"
]
|
| contactPoint |
{
"fn": "NIH",
"@type": "vcard:Contact",
"hasEmail": "mailto:info@nih.gov"
}
|
| description | Background The glutathione S-transferase (GST) enzyme GSTP1 utilizes byproducts of oxidative stress. We previously showed that alleles of GSTP1 that encode the Ile105→Val105 substitution are associated with the asthma phenotypes of atopy and bronchial hyperresponsiveness (BHR). However, a further polymorphic site (Ala114→Val114) has been identified that results in the following alleles: GSTP1*A (wild-type Ile105→Ala114), GSTP1*B (Val105→Ala114), GSTP1*C (Val105→Val114) and GSTP1*D (Ile105→Val114). Methods Because full identification of GSTP1 alleles may identify stronger links with asthma phenotypes, we describe an amplification refractory mutation system (ARMS) assay that allows identification of all genotypes. We explored whether the GSTP1 substitutions influence susceptibility to asthma, atopy and BHR. Results Among 191 atopic nonasthmatic, atopic asthmatic and nonatopic nonasthmatic individuals, none had the BD, CD, or DD genotypes. GSTP1 BC was significantly associated with reduced risk for atopy (P = 0.031). Compared with AA, trend test analysis identified a significant decrease in the frequency of GSTP1 BC with increasing severity of BHR (P = 0.031). Similarly, the frequency of GSTP1 AA increased with increasing BHR. Conclusion These data suggest that GSTP1*B and possibly GSTP1*C are protective against asthma and related phenotypes. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "Official Government Data Source",
"mediaType": "text/html",
"description": "Visit the original government dataset for complete information, documentation, and data access.",
"downloadURL": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC56208/"
}
]
|
| identifier | https://healthdata.gov/api/views/stmb-pzbn |
| issued | 2025-07-14 |
| keyword |
[
"asthma-genetics",
"atopy",
"bronchial-hyperresponsiveness",
"gstp1-gene",
"nih"
]
|
| landingPage | https://healthdata.gov/d/stmb-pzbn |
| modified | 2025-09-06 |
| programCode |
[
"009:048"
]
|
| publisher |
{
"name": "National Institutes of Health",
"@type": "org:Organization"
}
|
| theme |
[
"NIH"
]
|
| title | Simultaneous identification of |