Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

TRACKING CLIMATE MODELS

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: August 04, 2025 | Last Modified: 2025-03-31
CLAIRE MONTELEONI*, GAVIN SCHMIDT**, AND SHAILESH SAROHA*** Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate scientists to simulate and predict climate. Given temperature predictions from the top 20 climate models worldwide, and over 100 years of historical temperature data, we track the changing sequence of which model currently predicts best. We use an algorithm due to Monteleoni and Jaakkola that models the sequence of observations using a hierarchical learner, based on a set of generalized Hidden Markov Models (HMM), where the identity of the current best climate model is the hidden variable. The transition probabilities between climate models are learned online, simultaneous to tracking the temperature predictions. On historical data, our online learning algorithm’s average prediction loss nearly matches that of the best performing climate model in hindsight. Moreover its performance surpasses that of the average model prediction, which was the current state-of-the-art in climate science, the median prediction, and least squares linear regression. We also experimented on climate model predictions through the year 2098. Simulating labels with the predictions of any one climate model, we found significantly improved performance using our online learning algorithm with respect to the other climate models, and techniques.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov