Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Unsupervised Anomaly Detection for Liquid-Fueled Rocket Prop...

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: August 04, 2025 | Last Modified: 2025-04-01
Title: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. Abstract: This article describes the results of applying four unsupervised anomaly detection algorithms to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an experimental rocket engine test stand located at NASA Stennis Space Center. The article describes nine anomalies detected by the four algorithms. The four algorithms use four different definitions of anomalousness. Orca uses a nearest-neighbor approach, defining a point to be an anomaly if its nearest neighbors in the data space are far away from it. The Inductive Monitoring System clusters the training data, and then uses the distance to the nearest cluster as its measure of anomalousness. GritBot learns rules from the training data, and then classifies points as anomalous if they violate these rules. One-class support vector machines map the data into a high-dimensional space in which most of the normal points are on one side of a hyperplane, and then classify points on the other side of the hyperplane as anomalous. Because of these different definitions of anomalousness, different algorithms detect different anomalies. We therefore conclude that it is useful to use multiple algorithms.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov