Return to search results
Current perspectives on synovitis
The synovium lines the noncartilaginous surfaces of the diarthrodial joints, and synovial tissue is also found in tendon sheaths and bursae [1]. Several rheumatic diseases are characterized by synovial inflammation. In these conditions, descriptive studies of synovial biopsy specimens may contribute to an understanding of the events that take placein vivo, and they complement experimental animal studies as well as in-vitro studies. Examination of synovial tissue is generally more relevant than synovial fluid analysis, except, for example, the analysis of neutrophils and platelets, and studies of soluble mediators. Recently, there has been an enormous upsurge in investigations of the pathological changes in the synovium [2] because of the availability of new methods to obtain synovial biopsy samples [3,4] and because of the development of immunohistological methods, in-situ hybridization, and the polymerase chain reaction. Moreover, the complementary DNA microarray technology may hold great promise for synovial tissue analysis in the future [5].
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| bureauCode |
[
"009:25"
]
|
| contactPoint |
{
"fn": "NIH",
"@type": "vcard:Contact",
"hasEmail": "mailto:info@nih.gov"
}
|
| description | The synovium lines the noncartilaginous surfaces of the diarthrodial joints, and synovial tissue is also found in tendon sheaths and bursae [1]. Several rheumatic diseases are characterized by synovial inflammation. In these conditions, descriptive studies of synovial biopsy specimens may contribute to an understanding of the events that take placein vivo, and they complement experimental animal studies as well as in-vitro studies. Examination of synovial tissue is generally more relevant than synovial fluid analysis, except, for example, the analysis of neutrophils and platelets, and studies of soluble mediators. Recently, there has been an enormous upsurge in investigations of the pathological changes in the synovium [2] because of the availability of new methods to obtain synovial biopsy samples [3,4] and because of the development of immunohistological methods, in-situ hybridization, and the polymerase chain reaction. Moreover, the complementary DNA microarray technology may hold great promise for synovial tissue analysis in the future [5]. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "Official Government Data Source",
"mediaType": "text/html",
"description": "Visit the original government dataset for complete information, documentation, and data access.",
"downloadURL": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC128863/"
}
]
|
| identifier | https://healthdata.gov/api/views/gi2f-2zj3 |
| issued | 2025-07-14 |
| keyword |
[
"joint-inflammation",
"nih",
"rheumatology",
"synovitis"
]
|
| landingPage | https://healthdata.gov/d/gi2f-2zj3 |
| modified | 2025-09-29 |
| programCode |
[
"009:048"
]
|
| publisher |
{
"name": "National Institutes of Health",
"@type": "org:Organization"
}
|
| theme |
[
"NIH"
]
|
| title | Current perspectives on synovitis |