Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Efficient adenovirus-mediated gene transfer into primary T cells and thymocytes in a new coxsackie/adenovirus receptor transgenic model

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 07, 2025 | Last Modified: 2025-09-06
Background Gene transfer studies in primary T cells have suffered from the limitations of conventional viral transduction or transfection techniques. Replication-defective adenoviral vectors are an attractive alternative for gene delivery. However, naive lymphocytes are not readily susceptible to infection with adenoviruses due to insufficient expression of the coxsackie/adenovirus receptor. Results To render T cells susceptible to adenoviral gene transfer, we have developed three new murine transgenic lines in which expression of the human coxsackie/adenovirus receptor (hCAR) with a truncated cytoplasmic domain (hCARΔcyt) is limited to thymocytes and lymphocytes under direction of a human CD2 mini-gene. hCARΔcyt.CD2 transgenic mice were crossed with DO11.10 T cell receptor transgenic mice (DO11.hCARΔcyt) to allow developmental studies in a defined, clonal T cell population. Expression of hCARΔcyt enabled adenoviral transduction of resting primary CD4+ T cells, differentiated effector T cells and thymocytes from DO11.hCARΔcyt with high efficiency. Expression of hCARΔcyt transgene did not perturb T cell development in these mice and adenoviral transduction of DO11.hCARΔcyt T cells did not alter their activation status, functional responses or differentiative potential. Adoptive transfer of the transduced T cells into normal recipients did not modify their physiologic localization. Conclusion The DO11.hCARΔcyt transgenic model thus allows efficient gene transfer in primary T cell populations and will be valuable for novel studies of T cell activation and differentiation.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov