Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Latent transforming growth factor β-binding protein-3 and fibulin-1C interact with the extracellular domain of the heparin-binding EGF-like growth factor precursor

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 07, 2025 | Last Modified: 2025-09-06
Background The membrane-bound cell-surface precursor and soluble forms of heparin-binding epidermal growth factor-like growth factor (HB-EGF) contribute to many cellular developmental processes. The widespread occurrence of HB-EGF in cell and tissue types has led to observations of its role in such cellular and tissue events as tumor formation, cell migration, extracellular matrix formation, wound healing, and cell adherence. Several studies have reported the involvement of such extracellular matrix proteins as latent transforming growth factor β-binding protein, TGF-β, and fibulin-1 in some of these processes. To determine whether HB-EGF interacts with extracellular matrix proteins we used the extracellular domain of proHB-EGF in a yeast two-hybrid system to screen a monkey kidney cDNA library. cDNA clones containing nucleotide sequences encoding domains of two proteins were obtained and their derived amino acid sequences were evaluated. Results From ≈ 3 × 106 screened monkey cDNA clones, cDNA clones were recovered that contained nucleotide sequences encoding domains of the monkey latent transforming growth factor-β binding protein-3 (MkLTBP-3) and fibulin-1C protein. The amino acid sequence derived from the MkLTBP-3 gene shared 98.6% identity with human LTBP-3 and 86.7% identity with mouse LTBP-3 amino acid sequences. The amino acid sequence derived from the monkey fibulin-1C gene shared 97.2% identity with human fibulin-1C. Yeast two-hybrid screens indicate that LTBP-3 and fibulin-1C interact with proHB-EGF through their calcium-binding EGF-like modules. Conclusions The interactions of the extracellular domain of proHB-EGF with LTBP-3 and fibulin-1C suggest novel functions for HB-EGF between cell and tissue surfaces.

Find Related Datasets

Click any tag below to search for similar datasets

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov