The potential of human regulatory T cells generated
Regulatory T cells prevent autoimmunity by suppressing the reactivity of potentially aggressive self-reactive T cells. Contact-dependent CD4+ CD25+ 'professional' suppressor cells and other cytokine-producing CD4+ and CD8+ T-cell subsets mediate this protective function. Evidence will be reviewed that T cells primed with transforming growth factor (TGF)-β expand rapidly following restimulation. Certain CD4+ T cells become contact-dependent suppressor cells and other CD4+ and CD8+ cells become cytokine-producing regulatory cells. This effect is dependent upon a sufficient amount of IL-2 in the microenvironment to overcome the suppressive effects of TGF-β. The adoptive transfer of these suppressor cells generated ex vivo can protect mice from developing chronic graft-versus-host disease with a lupus-like syndrome and alter the course of established disease. These data suggest that autologous T cells primed and expanded with TGF-β have the potential to be used as a therapy for patients with systemic lupus erythematosus and other chronic inflammatory diseases. This novel adoptive immunotherapy also has the potential to prevent the rejection of allogeneic transplants.
Complete Metadata
| @type | dcat:Dataset |
|---|---|
| accessLevel | public |
| bureauCode |
[
"009:25"
]
|
| contactPoint |
{
"fn": "NIH",
"@type": "vcard:Contact",
"hasEmail": "mailto:info@nih.gov"
}
|
| description | Regulatory T cells prevent autoimmunity by suppressing the reactivity of potentially aggressive self-reactive T cells. Contact-dependent CD4+ CD25+ 'professional' suppressor cells and other cytokine-producing CD4+ and CD8+ T-cell subsets mediate this protective function. Evidence will be reviewed that T cells primed with transforming growth factor (TGF)-β expand rapidly following restimulation. Certain CD4+ T cells become contact-dependent suppressor cells and other CD4+ and CD8+ cells become cytokine-producing regulatory cells. This effect is dependent upon a sufficient amount of IL-2 in the microenvironment to overcome the suppressive effects of TGF-β. The adoptive transfer of these suppressor cells generated ex vivo can protect mice from developing chronic graft-versus-host disease with a lupus-like syndrome and alter the course of established disease. These data suggest that autologous T cells primed and expanded with TGF-β have the potential to be used as a therapy for patients with systemic lupus erythematosus and other chronic inflammatory diseases. This novel adoptive immunotherapy also has the potential to prevent the rejection of allogeneic transplants. |
| distribution |
[
{
"@type": "dcat:Distribution",
"title": "Official Government Data Source",
"mediaType": "text/html",
"description": "Visit the original government dataset for complete information, documentation, and data access.",
"downloadURL": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC128930/"
}
]
|
| identifier | https://healthdata.gov/api/views/mjta-t8xg |
| issued | 2025-07-14 |
| keyword |
[
"autoimmune-diseases",
"graft-versus-host-disease",
"lupus-like-syndrome",
"nih",
"regulatory-t-cells"
]
|
| landingPage | https://healthdata.gov/d/mjta-t8xg |
| modified | 2025-09-06 |
| programCode |
[
"009:048"
]
|
| publisher |
{
"name": "National Institutes of Health",
"@type": "org:Organization"
}
|
| theme |
[
"NIH"
]
|
| title | The potential of human regulatory T cells generated |